XNPVT

Updated: 31 Mar 2016

Use XNPVT to calculate the net present value for a series of cash flows with irregular time periods—cash flows of varying amount occurring at various points in time.

Syntax Public Shared Function XNPVT(ByVal Disc_rate As Double, ByVal CF_Amt() As Double, ByVal Time() As Double,)

Arguments

Disc_rate

the rate to be used in the calculation. *Disc_rate* is an expression that returns a **Double**, or of a type that can be implicitly converted to **Double**.

CF_Amt

the cash flow amounts to be used in the calculation. *CF_Amt* is an expression that returns an Array of **Double**, or of a type that can be implicitly converted to an Array of **Double**.

Time

the time (expressed in periods) associated with the *CF_Amt. Time* is an expression that returns an Array of **Double**, or of a type that can be implicitly converted to an Array of **Double**.

Return Type

Double

Remarks

- *CF_Amt* and *Time* are passed in as pairs, but they can be passed into the function in any order.
- *Disc_rate* should be in the same units as *Time*.

See Also

- EFV Enhanced future value
- ENPV Enhanced net present value
- EPV Enhanced present value
- NFV Net future value
- NPV Net present value
- XDCF Discounted cash flows value of a series of irregular cash flows
- XFV Future value of a cash flow between two dates

- XNFV Net future value for non-periodic cash flows
- XNPV Net present value for non-periodic cash flows
- XNPV30360 Net present value for irregular cash flows using a 30/360 day-count convention
- XPV Discounted value of a cash flow between two dates