OmegaExcessReturn

Updated: 31 Mar 2016
Use the aggregate function OmegaExcessReturn to calculate the Omega Excess Return. Omega Excess Return is calculated as:
$R p=\left(\prod_{i=1}^{n}\left(1+R a_{n}\right)\right)^{\frac{\text { Freq }}{n}}-1$
$\sigma_{\mathrm{D}}=\sqrt{\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}} \max (0, \text { MAR }- \text { Ra })^{2}}{\mathrm{n}}} \times \sqrt{\text { Freq }}$
$\sigma_{\mathrm{DM}}=\sqrt{\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}} \max (0, \mathrm{MAR}-\mathrm{Rb})^{2}}{\mathrm{n}}} \times \sqrt{\text { Freq }}$
OmegaExcessReturn $=\mathrm{Rp}-3 * \sigma_{\mathrm{D}} \times \sigma_{\mathrm{DM}}$
Where

```
Ra = asset return
Rb = benchmark return
MAR = minimum acceptable return
Freq = periodicity of returns
n = number of non-NULL returns in a GROUP
```

```
Syntax
Public Shared Function OmegaExcessReturn(
    ByVal Ra As Double(),
    ByVal Rb As Double(),
    ByVal MAR As Double,
    ByVal Freq As Integer,)
```


Arguments

Ra
the asset return for a period; the percentage return in floating point format (i.e. $10 \%=0.10$). $R a$ is an expression that returns an Array of Double, or of a type that can be implicitly converted to an Array of Double.

Rb
the benchmark return for a period; the percentage return in floating point format (i.e. 10\% = 0.10). $R b$ is an expression that returns an Array of Double, or of a type that can be implicitly converted to an Array of Double.

MAR
the minimum acceptable return in floating point format (i.e. $10 \%=0.10$). MAR is an expression that returns a Double, or of a type that can be implicitly converted to Double.

Freq
t the period in which $R a, R b$, and $M A R$ are expressed. For example, a Freq of 1 would indicate that the returns are annual; 4 would be quarterly, 12 would be monthly, and 252 would be business-daily. Freq is an expression that returns an Integer, or of a type that can be implicitly converted to Integer.

Return Type

Double

Remarks

- If $R a$ or $R b$ IS NULL it is not included in the calculation.
- If MAR IS NULL it is set to zero.
- If there are no non-NULL rows then NULL is returned.
- Freq must be greater than zero.
- If Freq IS NULL then Freq is set to 12.

See Also

- BetaCoKurt - Calculate the beta-cokurtosis of an asset return and a benchmark return
- BetaCoSkew - Calculate the beta-coskewness of an asset return and a benchmark return
- BetaCoVar - Calculate the beta-covariance of an asset return and a benchmark return
- DownsideDeviation - Calculate the downside deviation of asset returns
- DownsideFrequency - Calculate the downside frequency of asset returns
- DownsidePotential - Calculate the downside potential of asset returns
- FinCoKurt - Calculate the cokurtosis of an asset return and a benchmark return
- FinCoSkew - Calculate the coskewness of an asset return and a benchmark return
- Omega - Calculate the Omega of asset returns
- OmegaSharpeRatio - Calculate the Omega-Sharpe ratio of asset returns
- SemiDeviation - Calculate the semi-deviation of asset returns
- SemiVariance - Calculate the semi-variance of asset returns
- SpecificRisk - Calculate Specific Risk, the standard deviation of the error term in the regression equation
- SystematicRisk - Calculate the Systematic Risk
- TotalRisk - Calculate Total Risk
- UpsideFrequency - Calculate the upside frequency of asset returns
- UpsidePotentialRatio - Calculate the Upside Potential Ratio
- UpsideRisk - Calculate the Upside Risk, Upside Variance or Upside Deviation

