NOMINAL

Updated: 31 Mar 2016
Use NOMINAL to calculate the annual nominal interest rate.

```
Syntax
Public Shared Function NOMINAL(
    ByVal Effect_rate As Double,
    ByVal Npery As Integer,)
```


Arguments

Effect_rate
the effective rate of interest. Effect_rate is an expression that returns a Double, or of a type that can be implicitly converted to Double.

Npery

the number of compounding periods per year. Npery is an expression that returns a Integer, or of a type that can be implicitly converted to Integer.

Return Type
 Double

Remarks

- Npery is truncated to an integer
- if Effect_rate <=0 or if Npery <= 0 then NOMINAL returns an error
- NOMINAL is calculated using the following formula:
- NOMINAL $=\left(\left(1+E f f e c t _r a t e\right)^{\wedge}(1 / \text { Npery })-1\right)^{*}$ Npery

See Also

- CUMODDFIPMT - Cumulative interest on the periodic annuity payments between a start period and an end period
- CUMODDFPPMT - Cumulative principal on the periodic annuity payments between a start period and an end period
- FV - Future Value
- FVGA - Future Value of a Growing Annuity
- FVSCHEDULE - Future Value based on Compound Rates
- NPER - Number of Periods
- NPERGA - Number of Periods of a Growing Annuity
- ODDFIPMT - Interest portion of a periodic payment for an annuity with an odd first period
- ODDFPMT - Periodic payment for an annuity with an odd first period
- ODDFPMTSCHED - Generate Amortization schedule for an annuity with odd first period
- ODDFPPMT - Principal portion of a periodic payment for an annuity with an odd first period
- ODDFPV - Present value of an annuity with an odd first period
- ODDFRATE - Periodic interest rate for an annuity where the first period is longer or shorter than the other periods
- ODDPV - Present value of an annuity with an odd first period
- PMTGA - Initial Payment of a Growing Annuity
- PV - Present Value
- PVGA - Present Value of a Growing Annuity
- RATE - Interest Rate of an Annuity

