FVSCHEDULE

Updated: 31 Mar 2016

Use FVSCHEDULE to calculate the future value of an initial investment using a series of compound rates. This function calculates the value of the compound rates, the result of which can then be used to multiply against the initial investment.

Syntax Public Shared Function FVSCHEDULE(ByVal Interest_rate As Double(),)

Arguments

Interest_rate

the interest rate values to be compounded. *Interest_rate* is an expression that returns an Array of **Double**, or of a type that can be implicitly converted to an Array of **Double**

Return Type

Double

Remarks

• If Interest_rate = -1 then the compounded rate = 0

See Also

- CUMODDFIPMT Cumulative interest on the periodic annuity payments between a start period and an end period
- CUMODDFPPMT Cumulative principal on the periodic annuity payments between a start period and an end period
- FV Future Value
- FVGA Future Value of a Growing Annuity
- NOMINAL Annual Nominal Interest Rate
- NPER Number of Periods
- NPERGA Number of Periods of a Growing Annuity
- ODDFIPMT Interest portion of a periodic payment for an annuity with an odd first period
- ODDFPMT Periodic payment for an annuity with an odd first period
- ODDFPMTSCHED Generate Amortization schedule for an annuity with odd first period
- ODDFPPMT Principal portion of a periodic payment for an annuity with an odd first period
- ODDFPV Present value of an annuity with an odd first period
- ODDFRATE Periodic interest rate for an annuity where the first period is longer or shorter than the other periods
- ODDPV Present value of an annuity with an odd first period

- PMTGA Initial Payment of a Growing Annuity
- PV Present Value
- PVGA Present Value of a Growing Annuity
- RATE Interest Rate of an Annuity