ConstantPrincipal

Updated: 31 Mar 2016
Use ConstantPrincipal to return the cash flow schedule for a loan with a fixed maturity date where the principal is reduced on a straight-line basis. ConstantPrincipal computes the periodic interest and principal amounts bring the loan balance to zero on the maturity date. ConstantPrincipal supports separate interest and principal repayment schedules.

The interest and principal payment periods are entered in ConstantPrincipal as the number of months between payments. For example, a loan with monthly payments of interest would have an interest frequency of 1 . If principal is to be repaid every months, then it would have a principal payment frequency of 6.

ConstantPrincipal supports both an initial grace period and an additional grace period during the life of the loan, for principal and/or interest. All payments and their associated dates are calculated with respect to the reference date supplied to the function (which should not be confused with the start date). If an initial interest grace period is entered in ConstantPrincipal and it is greater than the reference date, then it becomes the first interest payment date and subsequent interest payments are calculated from that date forward. The same principal applies for principal payments.

If any payments would otherwise occur in the specified grace period, then that payment is moved to the end of the grace period and all remaining payments are calculated from the end of the grace period.

If no initial grace period is specified then the first payment date is calculated using the respective payment frequency. If the start date has been entered and the number of months between the start date and the reference date is less than the frequency, then the first payment date is calculated by adding the respective frequency (as a number of months) to the start date.

If no start date has been entered but a previous payment date has been entered and the number of months between the previous payment date and the reference date is less than the frequency, then the first payment date is calculated by adding the respective frequency (as a number of months) to the previous payment date.

If there is no start date and previous payment dates or the number of months between those dates and the reference date is greater than the frequency, then the first payment date is calculated by adding the respective frequency (as a number of months) to the reference date.

All payments in the resultant table are moved to the end of the month and interest is calculated using these end-of-month dates.

The interest rate is calculated as:
$I=\left[\left(\left(1+\frac{R \times F}{12}\right)^{12 / F}\right)^{T}-1\right]$
Where:

```
| = InterestRate
R = InterestRate
F = Frequency
T = Time, in years, from the previous interest payment date to PaymentDate
```

In the case where there are one or more principal payments between interest payment dates, the interest payment amount is calculated using the outstanding principal balances during the interest payment period.

If the irregular period is longer than the regular period then the interest amount is broken out into the regular interest amount and a 'grace' interest amount.

```
Syntax
Public Shared Function ConstantPrincipal(
    ByVal OutstandingAmount As Double,
    ByVal InterestBasis As String,
    ByVal InterestRate As Double,
    ByVal PrincipalPaymentFrequency As Integer,
    ByVal InterestPaymentFrequency As Integer,
    ByVal LastPrinPayAmount As Double,
    ByVal MaturityDate As Date,
    ByVal ReferenceDate As Date,
    ByVal PrevPrincipalPayDate As Date,
    ByVal PrevInterestPayDate As Date,
    ByVal StartDate As Date,
    ByVal FirstPrincipalPayDate As Date,
    ByVal FirstInterestPayDate As Date,
    ByVal PrincipalGracePeriodStartDate As Date,
    ByVal PrincipalGracePeriodEndDate As Date,
    ByVal InterestGracePeriodStartDate As Date,
    ByVal InterestGracePeriodEndDate As Date,)
```


Arguments

OutstandingAmount

the principal amount of the loan. OutstandingAmount is an expression that returns a Double, or of a type that can be implicitly converted to Double.

InterestBasis
the day count convention used to calculate the interest amount. InterestBasis can be 30/360, Actual/360, Actual/365, or Actual/Actual. InterestBasis is an expression that returns a String, or of a type that can be implicitly converted to String.

InterestRate

the annual rate of interest for the loan. InterestRate is an expression that returns a Double, or of a type that can be implicitly converted to Double.

PrincipalPaymentFrequency

the number of months between principal payments. PrincipalPaymentFrequency is an expression that returns an Integer, or of a type that can be implicitly converted to Integer.

InterestPaymentFrequency

the number of months in a regular interest payment. InterestPaymentFrequency is an expression that returns an Integer, or of a type that can be implicitly converted to Integer.

LastPrinPayAmount

the amount of the principal payment due on the maturity date. LastPrinPayAmount is an expression that returns a Double, or of a type that can be implicitly converted to Double.

MaturityDate

the maturity date of the loan. MaturityDate is an expression that returns a Date, or of a type that can be implicitly converted to Date.

ReferenceDate

the starting date for the number of months with respect to all other dates. ReferenceDate is an expression that returns a Date, or of a type that can be implicitly converted to Date.

PrevPrincipalPayDate

the last principal payment date prior to the reference date. PrevPrincipalPayDate is an expression that returns a Date, or of a type that can be implicitly converted to Date.

PrevInterestPayDate

the last interest payment date prior to the reference date. PrevInterestPayDate is an expression that returns a Date, or of a type that can be implicitly converted to Date.

StartDate

the start date of the loan. StartDate is an expression that returns a Date, or of a type that can be implicitly converted to Date.

FirstPrincipalPayDate

the first principal payment date of the loan if other than a regular periodic payment. FirstPrincipalPayDate is an expression that returns a Date, or of a type that can be implicitly converted to Date.

FirstInterestPayDate

the first interest payment date of the loan if other than a regular periodic payment. FirstInterestPayDate is an expression that returns a Date, or of a type that can be implicitly converted to Date.

PrincipalGracePeriodStartDate

the date on which the (interim) principal grace period commences.
PrincipalGracePeriodStartDate is an expression that returns a Date, or of a type that can be implicitly converted to Date.

PrincipalGracePeriodEndDate

the date on which the (interim) principal grace period concludes. PrincipalGracePeriodEndDate is an expression that returns a Date, or of a type that can be implicitly converted to Date.

InterestGracePeriodStartDate

the date on which the (interim) interest grace period commences. InterestGracePeriodStartDate is an expression that returns a Date, or of a type that can be implicitly converted to Date.

InterestGracePeriodEndDate

the date on which the (interim) interest grace period concludes. InterestGracePeriodEndDate is an expression that returns a Date, or of a type that can be implicitly converted to Date.

Return Type

FinancialTypes.ConstantPrincipal_table

```
Class ConstantPrincipal_table
    Inherits Data.DataTable
    Property Item(RowIndex As Integer) As FinancialTypes.OutputRow_ConstantPrincipal
Class OutputRow_ConstantPrincipal
    Public Period As Integer
    Public PrincipalPayment As Double
    Public InterestPayment As Double
    Public CashFlow As Double
    Public OutstandingExposure As Double
    Public CapitalAmountInDebt As Double
    Public TotalExposure As Double
    Public NumberOfMonth As Integer
    Public PaymentDate As Date
    Public GraceInterest As Double
    Public InterestRate As Double
End Class
```

Column	Description
Period	A reference number uniquely identifying a row in the resultant table.
PrincipalPayment	The amount of the principal payment.
InterestPayment	The amount of the regular interest payment.
CashFlow	PrincipalPayment + InterestPayment + GraceInterest.
OutstandingExposure	When Period = 0 then OutstandingAmount. For Period >0 then OutstandingExposure(Period-1) + InterestPayment.
CapitalAmountInDebt	When Period $=0$, OutstandingAmount. For Period >0 then CapitalAmountInDebt(Period-1) - PrincipalPayment
TotalExposure	When Period = 0, OutstandingAmount. For Period >0 then CapitalAmountInDebt(Period-1) + InterestPayment
NumberOfMonth	The number of months between the ReferenceDate and the PaymentDate.

PaymentDate	The end-of-month date of the payment.
GraceInterest	The amount of the grace interest
InterestRate	The interest rate from the previous interest payment date to the PaymentDate.

Remarks

- The PaymentDate for all rows is generated as the last day of the month.
- For Period = 0, PrincipalPayment, InterestPayment, CashFlow, NumberOfMonth, GraceInterest, and InterestRate are set to 0 .
- If Frequency is NULL then Frequency $=1$.
- If InterestRate is NULL then InterestRate $=0$.
- If ReferenceDate is NULL then ReferenceDate equals the current system date
- GraceInterest is only calculated on FirstInterestPayDate and InterestGracePeriodEndDate.
- GraceInterest is only calculated if length of the grace interest periods is greater than PaymentFrequency.
- GraceInterest is the difference between the interest for the period from the previous interest payment to PaymentDate and interest that would have been calculated for a period with length equal to PaymentFrequency.
- CashFlow may not equal PaymentAmount on FirstPayDate or GracePeriodEndDate due to GraceInterest.
- The last row returned will always be for the maturity date and may be shorter than a regular period depending on the combination of dates and PaymentFrequency
-

See Also

- AMORTRATE - Constant daily effective rate for bond/loan amortization
- AMORTSCHED - Generate amortization schedule of a loan
- Balloon - Schedule with periodic interest payments and principal repaid at maturity
- Bullet - Schedule with single interest and principal payment at maturity
- ConstantCashFlow - Schedule with equal periodic cash flows
- ConstantCashFlowFR - Schedule for a loan with a fixed maturity date and annuity-style payments
- ConstantPaymentAmount -Schedule with no maturity with fixed periodic payment amount
- ConstantPrincipalAmount - Schedule with no fixed maturity with a fixed periodic principal payment
- ConstantPrincipalRate - schedule with no fixed maturity where a fixed percentage principal payment
- CONSTPRINAMORT - Schedule of a loan with a fixed principal repayment
- NPD - Next payment date of a loan
- NPNO - Next payment number of a loan
- PAYMENTPERIODS - Number of months until first payment date, start of grace period, end of grace period, and total number payments for a loan
- PERIODRATE - Adjust the nominal rate of a loan
- PPD - Previous payment date of a loan
- PPNO - Previous payment number of a loan
- UNEQUALLOANPAYMENTS - Schedule for a loan where interest and principal payment frequencies differ

