ConstantPaymentAmount

Updated: 31 Mar 2016
Use the table-valued function ConstantPaymentAmount to return the cash flow schedule for a loan with a fixed payment amount but no fixed maturity date. ConstantPaymentAmount computes the periodic interest and principal amounts until the loan balance has been brought to zero.

The payment period is entered in ConstantPaymentAmount as the number of months between payments. For example, a loan with monthly payments would have a frequency of 1 . A loan with quarterly payments would have frequency of 3 . A loan with annual payments would have a frequency of 12.

ConstantPaymentAmount supports both an initial grace period and an additional grace period during the life of the loan. All payments and their associated dates are calculated with respect to the reference date supplied to the function (which should not be confused with the start date). If an initial grace period is entered in ConstantPaymentAmount and it is greater than the reference rate, then it becomes the first interest payment date and subsequent interest payments are calculated from that date forward.

If any payments would otherwise occur in the specified grace period, then that payment is moved to the end of the grace period and all remaining payments are calculated from the end of the grace period.

If no initial grace period is specified then the first payment date is calculated using the interest payment frequency. If the start date has been entered and the number of months between the start date and the reference date is less than the frequency, then the first payment date is calculated by adding the frequency (as a number of months) to the start date.

If no start date has been entered but a previous payment date has been entered and the number of months between the previous payment date and the reference date is less than the frequency, then the first payment date is calculated by adding the frequency (as a number of months) to the previous payment date.

If there is no start date and previous payment dates or the number of months between those dates and the reference date is greater than the frequency, then the first payment date is calculated by adding the frequency (as a number of months) to the reference date.

All payments in the resultant table are moved to the end of the month and interest is calculated using these end-of-month dates.

The interest payment is calculated as:
$I=P \times\left[\left(\left(1+\frac{R \times F}{12}\right)^{12 / F}\right)^{T}-1\right]$
Where:

I = InterestPayment

$\mathrm{P}=$ OutstandingAmount
$\mathrm{R}=$ InterestRate
$\mathrm{F}=$ Frequency
$\mathrm{T}=$ Time, in years, from PaymentDate(Period-1) to PaymentDate
If the irregular period is longer than the regular period then the interest amount is broken out into the regular interest amount and a 'grace' interest amount.

```
Syntax
Public Shared Function ConstantPaymentAmount(
    ByVal OutstandingAmount As Double,
    ByVal InterestBasis As String,
    ByVal InterestRate As Double,
    ByVal PaymentFrequency As Integer,
    ByVal PaymentAmount As Double,
    ByVal ReferenceDate As Date,
    ByVal PrevPayDate As Date,
    ByVal StartDate As Date,
    ByVal FirstPayDate As Date,
    ByVal GracePeriodStartDate As Date,
    ByVal GracePeriodEndDate As Date,)
```


Arguments

OutstandingAmount

the principal amount of the loan. OutstandingAmount is an expression that returns a Double, or of a type that can be implicitly converted to Double.

InterestBasis

the day count convention used to calculate the interest amount. InterestBasis can be 30/360, Actual/360, Actual/365, or Actual/Actual. InterestBasis is an expression that returns a String, or of a type that can be implicitly converted to String.

InterestRate
the annual rate of interest for the loan. InterestRate is an expression that returns a Double, or of a type that can be implicitly converted to Double.

PaymentFrequency

the number of months in a regular interest payment. PaymentFrequency is an expression that returns an Integer, or of a type that can be implicitly converted to Integer.

PaymentAmount

the amount of the periodic payment. PaymentAmount is an expression that returns a Double, or of a type that can be implicitly converted to Double.

ReferenceDate
the starting date for the number of months with respect to all other dates. ReferenceDate is an expression that returns a Date, or of a type that can be implicitly converted to Date.

PrevPayDate

the last interest payment date prior to the reference date. PrevPayDate is an expression that returns a Date, or of a type that can be implicitly converted to Date.

StartDate

the start date of the loan. StartDate is an expression that returns a Date, or of a type that can be implicitly converted to Date.

FirstPayDate

the first payment date of the loan if other than a regular periodic payment. FirstPayDate is an expression that returns a Date, or of a type that can be implicitly converted to Date.

GracePeriodStartDate

the date on which the (interim) grace period commences. GracePeriodStartDate is an expression that returns a Date, or of a type that can be implicitly converted to Date.

GracePeriodEndDate

the date on which the (interim) grace period concludes. GracePeriodEndDate is an expression that returns a Date, or of a type that can be implicitly converted to Date.

```
Return Type
FinancialTypes.ConstantPaymentAmount_table
    Class ConstantPaymentAmount_table
    Inherits Data.DataTable
    Property Item(RowIndex As Integer) As FinancialTypes.OutputRow_ConstantPaymentAmount
    Class OutputRow_ConstantPaymentAmount
    Public Period As Integer
    Public PrincipalPayment As Double
    Public InterestPayment As Double
    Public CashFlow As Double
    Public OutstandingExposure As Double
    Public CapitalAmountInDebt As Double
    Public TotalExposure As Double
    Public NumberOfMonth As Integer
    Public PaymentDate As Date
    Public GraceInterest As Double
    Public InterestRate As Double
    End Class
```


Column

Description

Period	A reference number uniquely identifying a row in the resultant table.
PrincipalPayment	The amount of the principal payment.
InterestPayment	The amount of the regular interest payment.
CashFlow	PrincipalPayment + InterestPayment + GraceInterest.
OutstandingExposure	When Period = 0 then OutstandingAmount. For Period >0 then OutstandingExposure(Period-1) + InterestPayment.
CapitalAmountInDebt	When Period = 0, OutstandingAmount. For Period >0 then CapitalAmountInDebt(Period-1) - PrincipalPayment
TotalExposure	When Period $=0$, OutstandingAmount. For Period >0 then CapitalAmountInDebt(Period-1) + InterestPayment
NumberOfMonth	The number of months between the ReferenceDate and the PaymentDate.
PaymentDate	The end-of-month date of the payment.
Gracelnterest	The amount of the grace interest
InterestRate	The interest amount from PaymentDate(Period-1) to PaymentDate assuming a principal amount of 1

Remarks

- The PaymentDate for all rows is generated as the last day of the month.
- For Period = 0, PrincipalPayment, InterestPayment, CashFlow, NumberOfMonth, GraceInterest, and InterestRate are set to 0.
- If Frequency is NULL then Frequency $=1$.
- If InterestRate is NULL then InterestRate $=0$.
- If ReferenceDate is NULL then ReferenceDate equals the current system processing date.
- GraceInterest is only calculated on FirstPayDate and GracePeriodEndDate.
- GraceInterest is only calculated if NumberOfMonth - NumberOfMonth(Period-1) > PaymentFrequency.
- GraceInterest is the difference between the interest for the period from the previous row to the current row minus interest that would have been calculated for a period with length equal to PaymentFrequency.
- CashFlow may not equal PaymentAmount on FirstPayDate or GracePeriodEndDate due to GraceInterest.
- The final payment is adjusted for CapitalAmountInDebt(Period-1) and the length of the period if it is less than PaymentFrequency.
- The last row returned will always be for the maturity date and may be shorter than a regular period depending on the combination of dates and PaymentFrequency.

See Also

- AMORTRATE - Constant daily effective rate for bond/loan amortization
- AMORTSCHED - Generate amortization schedule of a loan
- Balloon - Schedule with periodic interest payments and principal repaid at maturity
- Bullet - Schedule with single interest and principal payment at maturity
- ConstantCashFlow - Schedule with equal periodic cash flows
- ConstantCashFlowFR - Schedule for a loan with a fixed maturity date and annuity-style payments
- ConstantPrincipal - Schedule with fixed maturity date where the periodic principal payment is calculated on a straight-line basis
- ConstantPrincipalAmount - Schedule with no fixed maturity with a fixed periodic principal payment
- ConstantPrincipalRate - schedule with no fixed maturity where a fixed percentage principal payment
- CONSTPRINAMORT - Schedule of a loan with a fixed principal repayment
- NPD - Next payment date of a loan
- NPNO - Next payment number of a loan
- PAYMENTPERIODS - Number of months until first payment date, start of grace period, end of grace period, and total number payments for a loan
- PERIODRATE - Adjust the nominal rate of a loan
- PPD - Previous payment date of a loan
- PPNO - Previous payment number of a loan
- UNEQUALLOANPAYMENTS - Schedule for a loan where interest and principal payment frequencies differ

