CUMLIPMT

Updated: 31 Mar 2016
Use CUMLIPMT to calculate the cumulative interest payments for a specified range of periods for a loan or lease. LIPMT calculates the interest payment amount, which will generally be the same as the interest accrual amount, but in some cases involving the US Rule, may be different.

```
Syntax
Public Shared Function CUMLIPMT(
    ByVal PV As Double,
    ByVal LoanDate As Date,
    ByVal Rate As Double,
    ByVal FirstPayDate As Date,
    ByVal NumPmts As Integer,
    ByVal Pmtpyr As Integer,
    ByVal StartPer As Integer,
    ByVal EndPer As Integer,
    ByVal DaysInYr As Integer,
    ByVal FV As Double,
    ByVal IntRule As String,)
```


Arguments

PV
the principal amount of the loan or lease. $P V$ is an expression that returns a Double, or of a type that can be implicitly converted to Double.

LoanDate

the date that the loan starts accruing interest. LoanDate is an expression that returns a Date, or of a type that can be implicitly converted to Date.

Rate

the annual interest rate. Rate is an expression that returns a Double, or of a type that can be implicitly converted to Double.

FirstPayDate

the date that the first payment is due. FirstPayDate is an expression that returns a Date, or of a type that can be implicitly converted to Date.

NumPmts

the total number of payments to be recorded over the life of the loan. NumPmts is an expression that returns a Integer, or of a type that can be implicitly converted to Integer.

Pmtpyr

the number of loan payments made in a year. Pmtpyr is an expression that returns a Integer, or of a type that can be implicitly converted to Integer.

StartPer

the period number for which you want to start accumulating the payment information. StartPer is an expression that returns a Integer, or of a type that can be implicitly converted to Integer.

EndPer
the period number for which you want to stop accumulating the payment information. EndPer is an expression that returns a Integer, or of a type that can be implicitly converted to Integer.

DaysInYr

the denominator number of days to be used in the calculation of the interest amount in the odd first period. DaysInYr is an expression that returns a Integer, or of a type that can be implicitly converted to Integer.

FV
the future value at the end of the loan. FV is an expression that returns a Double, or of a type that can be implicitly converted to Double.

IntRule
Identifies the loan as conforming to the US Rule (" U ") or the actuarial rule (" A ") regarding the compounding of interest in the odd first period. IntRule is an expression that returns a String, or of a type that can be implicitly converted to String.

Return Type

Double

Remarks

- If DaysInYr is NULL, then DaysInYr = 360
- If $F V$ is NULL, then $F V=0$
- If IntRule is NULL, then IntRule = " A "
- FirstPayDate must be greater than LoanDate
- Pmtpyr must be 1, 2, 3, 4, 6, 12, 13, 24, 26, 52, or 365
- NumPmts must be greater than 1
- Rate must be greater than zero
- DaysInYr must be 360, 364, or 365
- PV must be greater than zero
- StartPer must be between 1 and NumPmts
- EndPer must be between StartPer and NumPmts
- If StartPer = EndPer then CUMLIPMT = LIPMT

See Also

- CUMIPMT - Cumulative interest paid on an annuity
- CUMLPPMT - Cumulative principal payments of a loan
- CUMPRINC - Cumulative principal paid on an annuity
- EFFECT - Effective annual interest rate
- IPMT - Interest portion of an annuity payment
- LIPMT - Interest portion of a loan payment
- LPMT - Periodic payment of a loan
- LPMTSCHED - Generate loan amortization with balloon payment and other parameters
- LPPMT - Principal portion of a loan payment
- LRATE - Interest rate for an annuity with an odd first period
- NUMPMTS - Total number of payments over the life of the loan
- PMT - Annuity periodic payment
- PMTSCHED - Payment schedule of a loan
- PPMT - Principal portion of an annuity payment
- TOTALINT - Total interest amount of a loan

